A method for making elastic high-capacity batteries from wood pulp was unveiled by researchers in Sweden and the US. Using nanocellulose broken down from tree fibres, a team from KTH Royal Institute of Technology and Stanford University produced an elastic, foam-like battery material that can withstand shock and stress.
"It is possible to make incredible materials from trees and cellulose," says Max Hamedi, who is a researcher at KTH and Harvard University. One benefit of the new wood-based aerogel material is that it can be used for three-dimensional structures.
"There are limits to how thin a battery can be, but that becomes less relevant in 3D, " Hamedi says. "We are no longer restricted to two dimensions. We can build in three dimensions, enabling us to fit more electronics in a smaller space."
A 3D structure enables storage of significantly more power in less space than is possible with conventional batteries, he says.
To read more, click here.