On the night of October 15, 1991, the “Oh-My-God” particle streaked across the Utah sky.

A cosmic ray from space, it possessed 320 exa-electron volts (EeV) of energy, millions of times more than particles attain at the Large Hadron Collider, the most powerful accelerator ever built by humans.

The particle was going so fast that in a yearlong race with light, it would have lost by mere thousandths of a hair. Its energy equaled that of a bowling ball dropped on a toe. But bowling balls contain as many atoms as there are stars. “Nobody ever thought you could concentrate so much energy into a single particle before,” said David Kieda, an astrophysicist at the University of Utah.

Five or so miles from where it fell, a researcher worked his shift inside an old, rat-infested trailer parked atop a desert mountain. Earlier, at dusk, Mengzhi “Steven” Luo had switched on the computers for the Fly’s Eye detector, an array of dozens of spherical mirrors that dotted the barren ground outside. Each of the mirrors was bolted inside a rotating “can” fashioned from a section of culvert, which faced downward during the day to keep the sun from blowing out its sensors. As darkness fell on a clear and moonless night, Luo rolled the cans up toward the sky.

“It was a pretty crude experiment,” said Kieda, who operated the Fly’s Eye with Luo and several others. “But it worked — that was the thing.”

The Fly’s Eye array operated out of Dugway Proving Ground, a military base in the desert of western Utah, from 1981 to 1993; it pioneered the “air fluorescence technique” for determining the energies and directions of ultrahigh-energy cosmic rays based on faint light emitted by nitrogen air molecules as the cosmic-ray air shower traverses the atmosphere. In 1991, the Fly’s Eye detected a cosmic ray that still holds the world record for highest-energy particle.

To read more, click here.