Graphene, an atom-thick material with extraordinary properties, is a promising candidate for the next generation of dramatically faster, more energy-efficient electronics. However, scientists have struggled to fabricate the material into ultra-narrow strips, called nanoribbons, that could enable the use of graphene in high-performance semiconductor electronics.

Now, University of Wisconsin-Madison engineers have discovered a way to grow with desirable semiconducting properties directly on a conventional germanium semiconductor wafer. This breakthrough could allow manufacturers to easily use graphene nanoribbons in hybrid integrated circuits, which promise to significantly boost the performance of next-generation electronic devices. This technology could also have specific uses in industrial and military applications, such as sensors that detect specific chemical and biological species and photonic devices that manipulate light.

In a paper published August 10, 2015 in the journal Nature Communications, Michael Arnold, an associate professor of materials science and engineering at UW-Madison, PhD student Robert Jacobberger, and their collaborators describe their new approach to producing graphene nanoribbons. Importantly, their technique can easily be scaled for mass production and is compatible with the prevailing infrastructure used in semiconductor processing.

To read more, click here.