A group of national particle physicists known as the Lattice Strong Dynamics Collaboration, led by a Lawrence Livermore National Laboratory team, has combined theoretical and computational physics techniques and used the Laboratory's massively parallel 2-petaflop Vulcan supercomputer to devise a new model of dark matter. It identifies it as naturally "stealthy" (i.e. like its namesake aircraft, difficult to detect) today, but would have been easy to see via interactions with ordinary matter in the extremely high-temperature plasma conditions that pervaded the early universe.
"These interactions in the early universe are important because ordinary and dark matter abundances today are strikingly similar in size, suggesting this occurred because of a balancing act performed between the two before the universe cooled," said Pavlos Vranas of LLNL, and one of the authors of the paper, "Direct Detection of Stealth Dark Matter through Electromagnetic Polarizability." The paper appears in an upcoming edition of the journal Physical Review Letters and is an "Editor's Choice."
To read more, click here.