Transfer of both the spin and orbital angular momentum properties of a single photon has been experimentally demonstrated for the first time.
In the science fiction dream of teleportation,1 an object is transported by disintegrating in one place and reappearing intact in another distant location. When only classical information is of interest, or when the object can be fully characterized by classical information (which can, in principle, be measured precisely), the object can be perfectly reconstructed (i.e., copied) in a remote location from the measurement results. The properties of microscopic quantum systems (e.g., single electrons, atoms, or molecules), however, are described by quantum wave functions that may be in superposition states. Furthermore, perfect measurement, or cloning, of unknown quantum states is impossible under the laws of quantum mechanics and a quantum teleportation scheme was proposed in 1993 to circumvent this problem.2 In this quantum teleportation method—given a classical communication channel, as well as a quantum channel of shared entangled states—arbitrary unknown quantum states can be transferred from a sender to a spatially distant receiver, without actual transmission of the object itself. Quantum teleportation now attracts much attention—not just from the quantum physics community (i.e., as a key element in long-distance quantum communication technology, distributed quantum networks, and quantum computation)—but also from more general audiences because of its connection to science fiction.
To read more, click here.