A lot of attention has been given to the differences between the quantum and classical worlds. For example, quantum entanglement, superposition, and teleportation are purely quantum phenomena with no classical counterparts. However, when it comes to certain areas of thermodynamics—specifically, thermal engines and refrigerators—quantum and classical systems so far appear to be nearly identical. It seems that the same thermodynamic laws that govern the engines in our vehicles may also accurately describe the tiniest quantum engines consisting of just a single particle.

In a new study, physicists Raam Uzdin, Amikam Levy, and Ronnie Kosloff at the Hebrew University of Jerusalem have investigated whether there is anything distinctly quantum about thermodynamics at the , or if "quantum" thermodynamics is really the same as classical thermodynamics.

For the first time, they have shown a difference in the thermodynamics of heat machines on the quantum scale: in part of the quantum regime, the three main engine types (two-stroke, four-stroke, and continuous) are thermodynamically equivalent. This means that, despite operating in different ways, all three types of engines exhibit all of the same thermodynamic properties, including generating the same amounts of power and heat, and doing so at the same efficiency. This new "thermodynamical equivalence principle" is purely quantum, as it depends on quantum effects, and does not occur at the classical level.

To read more, click here.