If you take certain atoms and make them almost as cold as they possibly can be, the atoms will fuse into a collective low-energy quantum state called a Bose-Einstein condensate. In 1968 physicist Herbert Fröhlich predicted that a similar process at a much higher temperature could concentrate all of the vibrational energy in a biological protein into its lowest-frequency vibrational mode. Now scientists in Sweden and Germany have the first experimental evidence of such so-called Fröhlich condensation.

The researchers made the condensate by aiming terahertz radiation at a crystallized protein extracted from the white of a chicken egg. They report their results in the journal Structural Dynamics, from AIP Publishing and the American Crystallographic Association.

"Observing Fröhlich condensation opens the door to a much wider-ranging study of what terahertz radiation does to proteins," said Gergely Katona, a senior scientist at the University of Gothenburg in Sweden. Terahertz radiation occupies the space in the electromagnetic spectrum between microwaves and infrared light. It has been proposed as a useful tool in applications ranging from airport security to cancer screening, but its effects on biological systems remains murky.

To read more, click here.