The biologists have done it again. Not so long ago it was cloning and embryonic stem cells that challenged moral imagination. These days all eyes are on a powerful new technique for engineering or “editing” DNA. Relatively easy to learn and to use, CRISPR has forced scientists, ethicists and policymakers to reconsider one of the few seeming red lines in experimental biology: the difference between genetically modifying an individual’s somatic cells and engineering the germline that will be transmitted to future generations. Instead of genetic engineering for one person why not eliminate that disease trait from all of her or his descendants?

This week, the U.S. National Academy of Sciences, the Chinese Academy of Sciences, and the U.K. Royal Society are trying to find ways to redraw that red line. And redraw it in a way that allows the technology to help and not to hurt humanity. Perhaps the hardest but most critical part of the ethical challenge: doing that in a way that doesn’t go down a dark path of “improvements” to the human race.

Compared to previous strategies, the technique known as CRISPR (clustered interspaced short palindromic repeats) is faster, more reliable and cheaper than previous methods for modifying the base pairs of genes. CRISPR is made up of scissors in the form of an enzyme that cuts DNA strands and an RNA guide that knows where to make the cut, so the traits expressed by the gene are changed. Already, labs are applying gene editing in pluripotent stem cells. Older methods are being used to help the human immune system’s T cells resist HIV, which might be done better with CRISPR. Gene editing trials are also in the offing for diseases like leukemia. It looks very much like these genies are out of the bottle.

To read more, click here.