Mimicking photosynthesis, water-splitting cells absorb sunlight and produce fuel. A challenge in designing such cells is pairing the semiconductor that absorbs sunlight and generates electrons with the catalyst that uses those electrons to produce fuel. Researchers introduced a novel way to study the flow of electrons at the interface of the two materials. Using this capability, they found that ion-permeable catalysts form interfaces that yield more energy relative to comparable -- but denser -- catalysts.

Water splitting provides a potential mechanism for the large-scale conversion and storage of solar energy in the form of a renewable chemical fuel, such as hydrogen. The invention of direct methods to probe charge-separating water-splitting interfaces enables the development of more efficient devices that produce hydrogen from sunlight and water. The discovery also sheds light on fundamental questions regarding charge-transfer at modified interfaces.

To read more, click here.