Wearable power sources for wearable electronics are limited by the size of garments.
With that in mind, researchers at Case Western Reserve University have developed flexible wire-shaped microsupercapacitors that can be woven into a jacket, shirt or dress.
By their design or by connecting the capacitors in series or parallel, the devices can be tailored to match the charge storage and delivery needs of electronics donned.
While there's been progress in development of those electronics—body cameras, smart glasses, sensors that monitor health, activity trackers and more—one challenge remaining is providing less obtrusive and cumbersome power sources.
"The area of clothing is fixed, so to generate the power density needed in a small area, we grew radially-aligned titanium oxide nanotubes on a titanium wire used as the main electrode," said Liming Dai, the Kent Hale Smith Professor of Macromolecular Science and Engineering. "By increasing the surface area of the electrode, you increase the capacitance."
To read more, click here.