The fastest supercomputers are built with the fastest microprocessor chips, which in turn are built upon the fastest switching technology. But, even the best semiconductors are reaching their limits as more is demanded of them. In the closing months of this year, came news of several developments that could break through silicon’s performance barrier and herald an age of smaller, faster, lower-power chips. It is possible that they could be commercially viable in the next few years.

In December, Google and Nasa announced that for problems involving nearly 1,000 binary variables, ‘quantum annealing’ significantly outperforms a classical computer – more than 108 times faster than simulated annealing running on a single core computer. The researchers think they’ve found a quantum algorithm that solves certain problems 100 million times faster than conventional processes on a PC.

In the journal Science, published in October, IBM researchers announced they had made the first carbon nanotube transistors that don’t suffer from reduced performance when made reduced in size, thus making the scaling down of chips easier. Another team published in Nature that they had created a quantum logic gate in silicon for the first time, making calculations between two quantum bits of information possible, and a silicon-based quantum computer an achievable reality.

Both results represent milestone scientific achievements and are highly complementary, said Möttönen Mikko, leader of quantum computing and the devices lab at Aalto University, Finland, and professor in quantum computing at the University of Jyväskylä. Mikko was not involved in either research project, and so is in a position to be an impartial commentator.

To read more, click here.