Neuromorphic chips are the new hotness in semiconductor research. These chips consist of networks of transistors that interact the way neurons do, allowing them to process analog input, like visual information, faster and more accurately than silicon chips can.
We’ve been inching our way closer to neuromorphic circuit architecture for years, precisely because it’s so much faster than current von-Neumann-architecture silicon at critical stuff like image processing. The overlap between neuronal and silicon processing is significant — it’s easy to sketch out a metaphor between nerve fibers and bundled wires, myelin and insulation, synapses and logic gates.
Optoelectronics extends the metaphor even further, comparing photons moving through a laser transistor with neurotransmitters crossing the synaptic gap. Now researchers from Princeton have demonstrated a way of using graphene as an optical capacitor, to stabilize the function of laser transistors in optical neuromorphic circuits.
To read more, click here.