In November, construction workers at the Massachusetts Institute of Technology came across a time capsule 942 years too soon. Buried in 1957 and intended for 2957, the capsule was a glass cylinder filled with inert gas to preserve its contents; it was even laced with carbon-14 so that future researchers could confirm the year of burial, the way they would date a fossil. MIT administrators plan to repair, reseal and rebury it. But is it possible to make it absolutely certain that a message to the future won’t be read before its time.

Quantum physics offers a way. In 2012, Jay Olson and Timothy Ralph, both physicists at the University of Queensland in Australia, laid out a procedure to encrypt data so that it can be decrypted only at a specific moment in the future. Their scheme exploits quantum entanglement, a phenomenon in which particles or points in a field, such as the electromagnetic field, shed their separate identities and assume a shared existence, their properties becoming correlated with one another’s. Normally physicists think of these correlations as spanning space, linking far-flung locations in a phenomenon that Albert Einstein famously described as “spooky action at a distance.” But a growing body of research is investigating how these correlations can span time as well. What happens now can be correlated with what happens later, in ways that elude a simple mechanistic explanation. In effect, you can have spooky action at a delay.

To read more, click here.