ABSTRACT
A region-delimited gravitational wave field can be constructed, such that a subset of geodesics crossing this region will move faster than nearby geodesics moving entirely inside flat spacetime, along a preferred direction. Null geodesics inside this region will move faster-than-light according to far away observers. The waveform is synthesized from homogeneous plane wave solutions, and the resulting field is the gravitational equivalent of a Gaussian beam.
Compared to other FTL schemes like the Alcubierre drive or Lorentzian wormholes, which rely on unphysical matter fields to stabilize the geometry, the current approach relies only on gravitational wave generation and transmission through empty space. Assuming the daunting problem of astronomical scale gravitational wave generation is somehow solved, this method could in principle enable FTL travel without appealing to exotic physics. However a detailed analysis of tidal forces is required before assessing the feasibility of this scheme for transit of payloads.
To download the .PDF of the paper, click here.