Essential for so-called quantum networks and quantum computers is something called a quantum bit, or qubit, which would replace the traditional bits that are stored or transmitted in today’s computers and optical networks. It consists of an ion with an unpaired electron that has two spin states—up or down, or a 0 and 1 in a binary system. But under some conditions, these qubits can be made to have both the 0 and 1 state simultaneously—a quantum state.

One of the problems researchers have faced in incorporating qubits in optical networks is getting the photons to strongly interact with the qubits in a solid-state device. The aim has been to develop something akin to an electro-optic modulator that uses electronic signals to modulate properties of light in today’s optical networks.

Researchers at the University of Maryland have developed a novel design that may have achieved that aim by “combining the light-trapping of photonic crystals with the electron-trapping of quantum dots.

To read more, click here.