One of the biggest quests in astrophysics is to find Earth-like planets around other stars -- places where life may exist. Regular telescopes are not good at directly imaging such small objects because a host star's light generally drowns out the relatively dimmer light of a potential planet.
But a new development in space imaging may solve that vexing problem.
A study led by Florida Institute of Technology astrophysicist Daniel Batcheldor has demonstrated that a charge injection device, or CID, has the ability to capture light from objects tens of millions of times fainter than another object in the same picture. An exoplanet next to bright star is one such example. This ability is a result of how the CID is used as a type of camera: each individual pixel works independently and uses a special indexing system. Very bright pixels get addressed very quickly, while the faint pixels are allowed to carry on gathering the fainter light.
"If this technology can be added to future space missions, it may help us make some profound discoveries regarding our place in the universe," Batcheldor said.
To read more, click here.