MPQ scientists observe unusual interference phenomena by scattering laser light from two atoms trapped inside an optical resonator.

The investigation and exploitation of light-matter-interaction in optical resonators is one of the central research topics in the Quantum Dynamics Division of Professor Gerhard Rempe, Director at the Max Planck Institute of Quantum Optics in Garching. A couple of years ago, the team succeeded in creating single-photon emitters using single atoms stored in optical resonators. The stationary atoms can, for example, serve as nodes for the exchange of quantum information in a long-distance quantum network.

Now, the scientists went one step further. They trapped a pair of atoms with well-defined relative positions in such a resonator and scattered light from this "double slit." They observed interference phenomena that contradict well-established intuition. These results were enabled by the development of a technique that allows for position control of the atoms with an accuracy well below the wavelength of the scattered light. One motivation for this experiment is to better understand fundamental aspects of cavity quantum electrodynamics. Furthermore, the technique paves the way for studying new concepts of entanglement generation between quantum bits and thus opens up new perspectives for quantum information processing.

To read more, click here.