For decades, researchers have tried to detect this invisible dark matter. Several types of devices have been put up on Earth and in space to capture the particles that dark matter is supposed to consist of, and experiments have attempted to create a dark matter particle by colliding ordinary matter particles at very high temperatures.
If such a collision should one day succeed, we would however not be able to directly see the produced dark matter particle. It would immediately pass on and fly away from the detectors -- but it will take some energy with it, and this energy loss will be recorded and indicate that a dark particle had been produced.
Despite all these initiatives no dark particle has yet been detected.
"Maybe it's because we have looked after dark particles in a way that will never be able to reveal them. Maybe dark matter is of a different character and needs to be looked for in a different way," says Martin Sloth, associate professor at The Centre for Cosmology and Particle Physics Phenomenology (CP3-Origins), University of Southern Denmark.
Together with his postdoc McCullen Sandora from CP3-Origins and postdoc Mathias Garny from CERN, he now presents a new model for what dark matter might be in the journal Physical Review Letters.
To read more, click here.