Elemental carbon appears in many forms, including diamond, fullerenes and graphene, which have unique structural, electronic, mechanical, transport and optical properties offering a broad range of applications in physics, chemistry and materials science. These include composite materials, nanoscale light emitting devices and energy harvesting materials.
Within the "carbon family," only carbyne, a truly one-dimensional form of carbon, has not yet been synthesized despite having been studied for more than 50 years. Its extreme instability in ambient conditions rendered the final experimental proof of its existence difficult to achieve. An international collaboration of researchers has developed a novel route for the bulk production of carbon chains composed of more than 6,400 carbon atoms by using thin, double-walled carbon nanotubes as protective hosts for the chains.
These findings are published in the journal Nature Materials and represent an elegant forerunner toward the final goal of carbyne's bulk production. Besides the potential applications, these findings open the possibility to answering fundamental questions about electron correlations, electron-phonon interactions and quantum phase transitions in one-dimensional materials.
To read more, click here.