Forty years ago, theoretical physicists predicted that certain magnetic materials could enter a bizarre state wherein their electrons would break into pieces. Now researchers have observed these fractional electrons in a two-dimensional material, proving that a so-called quantum spin liquid can really exist.
A quantum spin liquid is an exotic state of matter where electrons break down into quasiparticles called Majorana fermions. In a new paper published in Nature Materials this week, scientists looked at alpha ruthenium chloride, a two-dimensional material with a honeycomb structure. They used a technique called neutron scattering: bouncing a bunch of neutrons off an object and looking at the pattern they form.
If the alpha ruthenium chloride had been in a typical state, the neutrons would have produced a pattern of sharp lines. But the theorized quantum spin liquid would create a different pattern. In fact, in 2014, one of the co-authors of the current paper predicted that a quantum spin liquid would produce a pattern of broad curves. And that matches what the researchers saw in the experiment.
This finding raises some confusing questions. What is a quantum spin liquid and how does it compare to a liquid liquid? How can you split a fundamental particle like the electron into pieces? Welcome to the gnarly quantum realm—let’s break this down, Q&A style.
To read more, click here.