A team of Russian scientists lead by the Lomonosov Moscow State University physicists for the first time in history managed to measure, reliably and directly, the energetic gaps of a number of superconductors (first of all -- iron-containing). According to Svetoslav Kuzmichev who leads the research project the results of the work would allow to solve some questions concerning the appearance of the superconductivity in the iron-containing materials.

The main thing interesting for the physicists in this experiment was a chance to measure the temperature dependences of the two energetic gaps. The term "superconducting gap" refers to denoting a range of energies that is forbidden for the conducting electrons.

Since 1957, when American physicists John Bardeen, Leon N. Cooper and John Robert Schrieffer developed a theory explaining the superconductivity phenomena (the BCS theory, awarded with the Nobel Prize in 1972), there was only one such band: from the temperature of the transition to the superconductivity state to zero. But in 1959 a probable existence of the two-gap superconductors was assumed by a Soviet physicist V.A. Moskalenko and his US colleague G. Suhl. The two scientists independently deriveded sets of equations, describing mechanisms of such superconductivity, however experimentally the first two-band superconductor was found only at the beginning of the present century, in 2001. It was quite a simple in composition magnesium diboride.

By that time physicists doubted the possibility of the two-gap superconductivity. Something new, standing out of the common frameworks, always appears as a heavy psychological burden for researchers of any scientific fields. To lighten this 'burden', the scientific community preoccupied with superconductivity problems treated magnesium diboride as in exception, confirming the rule.

To read more, click here.