Scientists at Rice University have discovered that the strong force field emitted by a Tesla coil causes carbon nanotubes to self-assemble into long wires, a phenomenon they call "Teslaphoresis."
The team led by Rice chemist Paul Cherukuri reported its results this week in ACS Nano.
Cherukuri sees this research as setting a clear path toward scalable assembly of nanotubes from the bottom up.
The system works by remotely oscillating positive and negative charges in each nanotube, causing them to chain together into long wires. Cherukuri's specially designed Tesla coil even generates a tractor beam-like effect as nanotube wires are pulled toward the coil over long distances.
This force-field effect on matter had never been observed on such a large scale, Cherukuri said, and the phenomenon was unknown to Nikola Tesla, who invented the coil in 1891 with the intention of delivering wireless electrical energy.
To read more, click here.