Schematic of the third Aspect experiment testing quantum non-locality. Entangled photons from the source are sent to two fast switches, that direct them to polarizing detectors. The switches change settings very rapidly, effectively changing the detector settings for the experiment while the photons are in flight. (Figure by Chad Orzel)

The basic scenario for entanglement-based communication looks like this: two people, traditionally named “Alice” and “Bob” share a pair of particles that can each be measured in one of two quantum states, which we’ll call “0″ and “1.” These particles are prepared in an entangled state in which a measurement of the state of Alice’s particle is correlated with the measured state of Bob’s particle, no matter how far apart they are. That is, if Alice measures her particle in state 1 at precisely noon in Schenectady, she knows that Bob in Portland will also measure his particle to be in state 1, whether he’s in Portland, Maine, Portland, Oregon, or Portland Station on one of the moons of Yavin.

This seems like a perfect mechanism for sending information over vast distances, as Ethan notes: