Cold atoms in an optical lattice are often used to simulate other systems, with the advantage that researchers can create a potential-energy landscape of their choosing. A new study has demonstrated a novel synthetic potential in which the tunneling between lattice sites depends on whether the destination site is occupied or vacant. Such occupation-dependent tunneling processes are believed to have crucial influence on complex materials such as superconductors and ferromagnets.

Recent work has shown that the tunneling rate for cold atoms can be controlled by periodically driving, or “shaking,” the optical lattice in which the atoms are arranged. Researchers have used this so-called Floquet engineering to simulate a wide range of phenomena, such as ferromagnetism and topological insulators.

To read more, click here.