Searching vast cosmic communities like real estate agents rifling through listings, Cornell astronomers now hunt through time and space for habitable exoplanets – planets beyond our own solar system – looking at planets flourishing in old star, red giant neighborhoods.

Astronomers search for these promising worlds by looking for the “habitable zone,” the region around a star in which water on a planet’s surface is liquid and signs of life can be remotely detected by telescopes.

“When a star ages and brightens, the habitable zone moves outward and you’re basically giving a second wind to a planetary system,” said Ramses M. Ramirez, research associate at Cornell’s Carl Sagan Institute and lead author of the study. “Currently objects in these outer regions are frozen in our own solar system, like Europa and Enceladus – moons orbiting Jupiter and Saturn.”

In their work, Ramirez and Lisa Kaltenegger, associate professor of astronomy and director of the Sagan Institute, have modeled the locations of the habitable zones for aging stars and how long planets can stay in it. Their research, “Habitable Zones of Post-Main Sequence Stars,” will be published May 16 in the Astrophysical Journal.

To read more, click here.