Take one atom of the element antimony, use an ion beam to shoot it into a silicon substrate, and you just may be on your way to building a working quantum computer.

That's according to researchers at Sandia National Laboratories, who announced this week that they've used that technique with promising results.

In their experiment, described in the journal Applied Physics Letters, the researchers used an ion beam generator to insert the antimony atom into an industry-standard silicon substrate -- a process that took just microseconds. That atom, equipped with five electrons, carries one more than a silicon atom does. Because electrons pair up, the odd antimony electron remains free.

That free electron is where the potential lies. The researchers subjected it to pressure from an electromagnetic field and monitored its "spin," or whether it faced up or down. Spin is what enables electrons to serve as quantum bits, or "qubits," which are the core components of quantum computing.

While traditional computers represent numbers as 0s or 1s, a qubit can simultaneously be a 0 and a 1 through a state known as superposition.

Now that they've precisely placed one donor atom in silicon, the researchers figure they can insert a second one at just the right distance for communication between them. That will essentially be the start of a quantum computing circuit.

Sandia plans to attempt that next feat later this year.

To read more, click here.