Physicist Fatima Ebrahimi at the U.S. Department of Energy's (DOE) Princeton Plasma Physics Laboratory (PPPL) and Princeton University has for the first time performed computer simulations indicating the efficiency of a start-up technique for doughnut-shaped fusion machines known as tokamaks. The simulations show that the technique, known as coaxial helicity injection (CHI), could also benefit tokamaks that use superconducting magnets. The research was published in March 2016, in Nuclear Fusion, and was supported by the DOE's Office of Science.
Physicists are interested in CHI because it could produce part of the complex web of magnetic fields that controls the superhot plasma within tokamaks. One component of that web is produced by large "D"-shaped magnets that surround the tokamak and pass through the hole in its center. The other component is produced by a central electromagnet known as a solenoid, which induces a current inside the plasma that creates another set of magnetic fields. These fields combine with the fields produced by the "D"-shaped magnets to form a twisting vortex that prevents the plasma from touching the tokamak's walls.
To read more, click here.