It was billed as the vindication of the quantum computer. Late last year, researchers at Google announced that a quantum machine called the D-Wave 2X had executed a task 100 million times faster than a classical computer. The claim implies that the machine can complete in one second a task that might take a classical computer three years.
It also erased one facet of the skepticism that has long faced this particular version of a quantum computer. In the past, critics of so-called “quantum annealers” made by the Canadian company D-Wave Systems have wondered if the machines make use of intrinsically quantum processes at all.
Part of the problem lies in the catch-22 of quantum computing: The quantum features only work when they’re not being observed, so observing a quantum computer to check if it’s exploiting quantum behavior will destroy the quantum behavior being checked. “It’s hard to devise a physics experiment to study something you aren’t allowed to observe,” said Catherine McGeoch, a computer scientist at D-Wave. December’s news convincingly satisfied critics that the quantum annealer really does exploit uniquely quantum effects.
But it didn’t settle a more important question: What can these computers do that classical computers can’t? The claim of a 100-million-factor speedup did not conclusively prove that the D-Wave 2X — and quantum annealers in general — will profoundly surpass the abilities of classical machines. A case in point: The paper announcing the results was careful to mention that the 100-million-factor speedup came when the D-Wave computer was pitted against one particular type of algorithm running on a classical computer. Change the algorithm to a more efficient one, and the speedup disappears. “It’s a little like saying, ‘OK, we’re going to have a motorcycle race. Everybody bring out your motorbike.’ But only one person knows it’s going to be on dirt,” said Helmut Katzgraber, a computational physicist at Texas A&M University. “Then they bring the dirt bike, but nobody else knows. That’s basically what’s been done there.”
So how would the D-Wave machine compare in a fair race against the fastest classical computers? It depends on the racetrack.
To read more, click here.