Chiral molecules -- compounds that come in otherwise identical mirror image variations, like a pair of human hands -- are crucial to life as we know it.
Living things are selective about which "handedness" of a molecule they use or produce. For example, all living things exclusively use the right-handed form of the sugar ribose (the backbone of DNA), and grapes exclusively synthesize the left-handed form of the molecule tartaric acid. While homochirality -- the use of only one handedness of any given molecule -- is evolutionarily advantageous, it is unknown how life chose the molecular handedness seen across the biosphere.
Now, Caltech researchers have detected, for the first time, a chiral molecule outside of our solar system, bringing them one step closer to understanding one of the most puzzling mysteries of the early origins of life.
A paper about the work appears in the June 17 issue of the journal Science.
To read more, click here.