Scientists are getting closer to directly observing how and why water is essential to life as we know it.

A study in this week's Proceedings of the National Academy of Sciences provides the strongest evidence yet that proteins--the large and complex molecules that fold into particular shapes to enable biological reactions--can't fold themselves.

Rather, the work of folding is done by much smaller water molecules, which surround proteins and push and pull at them to make them fold a certain way in fractions of a second, like scores of tiny origami artists folding a giant sheet of paper at blazingly fast speeds.

Dongping Zhong, leader of the research group at The Ohio State University that made the discovery, called the study a "major step forward" in the understanding of water-protein interactions and said it answers a question that's been dogging research into protein dynamics for decades.

"For a long time, scientists have been trying to figure out how water interacts with proteins. This is a fundamental problem that relates to protein structure, stability, dynamics and--finally--function," said Zhong, who is the Robert Smith Professor of physics at Ohio State.

"We believe we now have strong direct evidence that on ultrafast time scales (picoseconds, or trillionths of a second), water modulates protein fluctuations," he concluded.

To read more, click here.