Researchers from the Foundation for Fundamental Research on Matter (FOM), the University of Amsterdam (UvA) and the Institute for Materials Science in Tsukuba (Japan) have discovered an exceptional new quantum state within a superconducting material. This exceptional quantum state is characterised by a broken rotational symmetry -- in other words, if you turn the material in a magnetic field, the superconductivity isn't the same everywhere in the material.
The material in which the new quantum state was discovered is bismuth selenide, or Bi2Se3. This material is a topological isolator. This group of materials exhibits a strange quality: they don't conduct electricity on the inside, but only on their surface. What's more, the researchers are able to make the material even more exceptional -- by adding a small amount of strontium to the bismuth-selenide, the material transforms into a superconductor. This means the material can conduct electricity extremely well at low temperatures because the electrical resistance has completely disappeared.
To read more, click here.