Physics researchers at CERN are preparing to sift through the latest batch of data from the Large Hadron Collider, an opportunity that some say happens only once in a lifetime.

This batch of data is unusually large. Between April last year, when the collider was switched on, and the end of the year, scientists at CERN collected about 2.6 “inverse femtobarns” (a unit of measurement for particle collision events) of data. Thus far this year, they have already collected 8 fb−1 , giving them a monster treasure trove of information to explore.

"This is the time when the probability of finding something new is highest," Tiziano Camporesi, head of the Compact Muon Solenoid (CMS) experiment at CERN, told Reuters.

The Large Hadron Collider, located beneath the Earth on the border between France and Switzerland, is known for smashing protons into each other at very high speeds and examining the particles created by the collisions. First switched on in 2008, the LHC discovered the famous Higgs boson particle in 2012, a finding that won the Nobel Prize for physics in 2013.

 

While the discovery of the Higgs boson was a leap forward for particle physics, many questions still remain that cannot be answered by physics’ Standard Model, the theory that classifies all of the known subatomic particles and describes their interactions. For instance, the Standard Model does not predict the existence of dark matter or dark energy, it doesn't explain how gravity works, it doesn't predict that neutrinos can change their flavor, and it doesn't explain why all the matter in the universe wasn't annihilated by an equal amount of corresponding antimatter.

There are currently seven particle detection experiments at the LHC. Two of them, Atlas and CMS, were involved in the discovery of the Higgs boson particle.

Now, scientists are excited by a “bump” detected by both Atlas and CMS in December. In the half year that has transpired since the bump was detected at an energy of 750 gigaelectronvolts, 450 papers have been written about the “bump,” leading some to urge caution against leaping to conclusions.

"What we have seen is like if you had thrown a coin six times and see that it always comes out heads,” Dr. Camporesi told Reuters. “You wouldn’t bet that the coin has two heads just on that."

To read more, click here.