Most systems in nature are inherently nonlinear, meaning that their response to any external excitation is not proportional to the strength of the applied stimulus. Nonlinearities are observed, for example, in macroscopic phenomena such as the flow of fluids like water and air or of currents in electronic circuits. Manipulating the nonlinear behavior is therefore inherently interesting for achieving control over several processes. An international team of researchers led by Andrea Cavalleri from the Max Planck Institute for the Structure and Dynamics of Matter at CFEL in Hamburg utilized the nonlinear interaction between a terahertz light field and a superconducting plasma wave in a high temperature cuprate superconductor to amplify the latter. This resulted in a more coherent superconductor, which is less susceptible to thermal fluctuations. Due to the non-dissipative superconducting nature of the plasma wave, the study opens up new avenues for "plasmonics", a field of science utilizing plasma waves for transmitting information. These findings are reported in the journal Nature Physics.

To read more, click here.