An out of this world experiment to grow large-volume protein crystals aboard the International Space Station has proven successful. These sorts of crystals, which may be used in everything from basic biomedical research to drug design, can be grown bigger and better in microgravity a finding that may help the pharmaceuticals industry ease a drug design bottleneck, since difficult-to-grow large crystals are sometimes needed for experiments on structure that can guide drug design.
A group of researchers from the University of Alabama in Huntsville, iXpressGenes, University of Grenada in Spain, and Oak Ridge National Laboratory designed microgravity experiments to grow crystals of inorganic pyrophosphatase (IPPase) in space. IPPase is an enzyme found in most living organisms that plays an important role in bone formation, DNA synthesis, and the making and breaking down of fats. The researchers' goal was to grow high-quality, large-volume crystals for use in neutron macromolecular crystallography (NMC), which is the preferred method for determining the positions of hydrogen atoms within macromolecules.
The group will present their findings during the American Crystallographic Association's 66th Annual Meeting, in Denver, Colorado, July 22-26.
To read more, click here.