After the Eyjafjallajökull volcano erupted in Iceland in 2010, flight cancellations left Miranda Cheng stranded in Paris. While waiting for the ash to clear, Cheng, then a postdoctoral researcher at Harvard University studying string theory, got to thinking about a paper that had recently been posted online. Its three coauthors had pointed out a numerical coincidence connecting far-flung mathematical objects. “That smells like another moonshine,” Cheng recalled thinking. “Could it be another moonshine?”
She happened to have read a book about the “monstrous moonshine,” a mathematical structure that unfolded out of a similar bit of numerology: In the late 1970s, the mathematician John McKay noticed that 196,884, the first important coefficient of an object called the j-function, was the sum of one and 196,883, the first two dimensions in which a giant collection of symmetries called the monster group could be represented. By 1992, researchers had traced this farfetched (hence “moonshine”) correspondence to its unlikely source: string theory, a candidate for the fundamental theory of physics that casts elementary particles as tiny oscillating strings. The j-function describes the strings’ oscillations in a particular string theory model, and the monster group captures the symmetries of the space-time fabric that these strings inhabit.
To read more, click here.