Researchers at North Carolina State University have developed a new type of inverter device with greater efficiency in a smaller, lighter package -- which should improve the fuel-efficiency and range of hybrid and electric vehicles.
Electric and hybrid vehicles rely on inverters to ensure that enough electricity is conveyed from the battery to the motor during vehicle operation. Conventional inverters rely on components made of the semiconductor material silicon.
Now researchers at the Future Renewable Electric Energy Distribution and Management (FREEDM) Systems Center at NC State have developed an inverter using off-the-shelf components made of the wide-bandgap semiconductor material silicon carbide (SiC) -- with promising results.
"Our silicon carbide prototype inverter can transfer 99 percent of energy to the motor, which is about two percent higher than the best silicon-based inverters under normal conditions," says Iqbal Husain, ABB Distinguished Professor of Electrical and Computer Engineering at NC State and director of the FREEDM Center.
"Equally important, the silicon carbide inverters can be smaller and lighter than their silicon counterparts, further improving the range of electric vehicles," says Husain, who co-authored two papers related to the work. "And new advances we've made in inverter components should allow us to make the inverters even smaller still."
To read more, click here.