The intricately sculpted device made by Paul Barclay and his team of physicists is so tiny it can only be seen under a microscope. But their diamond microdisk could lead to huge advances in computing, telecommunications, and other fields.
Barclay and his research group—part of the University of Calgary's Institute for Quantum Science and Technology and the National Institute of Nanotechnology—have made the first-ever nano-sized optical resonator (or optical cavity) from a single crystal of diamond that is also a mechanical resonator.
The team also measured—in the coupling of light and mechanical motion in the device—the high-frequency, long-lasting mechanical vibrations caused by the energy of light trapped and bouncing inside the diamond microdisk optical cavity.
"Diamond optomechanical devices offer a platform to study the quantum behaviour of microscopic objects," says Barclay, associate professor of physics and astronomy and Alberta Innovates Scholar in Quantum Nanotechnology in the Faculty of Science.
"These devices also have many potential applications, including state-of-the-art sensing, technology for shifting the colour of light, and quantum information and computing technologies."
The team's work is published in the peer-reviewed journal Optic, "Single-Crystal Diamond Low-Dissipation Cavity Optomechanics."
To read more, click here.