Australian engineers have created a new quantum bit which remains in a stable superposition for 10 times longer than previously achieved, dramatically expanding the time during which calculations could be performed in a future silicon quantum computer.
The new quantum bit, made up of the spin of a single atom in silicon and merged with an electromagnetic field - known as 'dressed qubit' - retains quantum information for much longer that an 'undressed' atom, opening up new avenues to build and operate the superpowerful quantum computers of the future.
The result by a team at Australia's University of New South Wales (UNSW), appears today in the online version of the international journal, Nature Nanotechnology.
"We have created a new quantum bit where the spin of a single electron is merged together with a strong electromagnetic field," said Arne Laucht, a Research Fellow at the School of Electrical Engineering & Telecommunications at UNSW, and lead author of the paper. "This quantum bit is more versatile and more long-lived than the electron alone, and will allow us to build more reliable quantum computers."
To read more, click here.