People have mixed opinions about ghosts. Some only think of them as the stuff of movies and books, while others believe they can feel them, have seen them, and that they need to be recognized as real, not imaginary.
Now, a process Einstein famously referred to as “spooky” is allowing scientists to catch “ghosts” on film for the first time thanks to the use of quantum cameras. But let’s be clear: These figures aren’t wandering souls or lingering ancestors. Rather, they are the images of objects from photons that never even experienced the objects pictured.
A normal digital camera is capable of capturing objects that aren’t immediately visible to its lens. But the ghost imaging technique, which shoots an image of an object from light without light ever bouncing off the object, is the result of quantum entanglement.
Quantum entanglement refers to the quantum states of two or more objects having an instantaneous link regardless of how far separated they are.
“For example, it is possible to prepare two particles in a single quantum state such that when one is observed to be spin-up, the other one will always be observed to be spin-down and vice versa, this despite the fact that it is impossible to predict, according to quantum mechanics, which set of measurements will be observed,” notes Science Daily.
In other words, measurements executed on the same system seem to be directly influencing other systems entangled with it. The problem is, no one seems to know exactly how it works.
To read more, click here.