It’s one thing to smash protons together. It’s another to make scientific sense of the debris that’s left behind.
This is the situation at CERN, the laboratory that houses the Large Hadron Collider, the largest and most powerful particle accelerator in the world. In order to understand all the data produced by the collisions there, experimental physicists and theoretical physicists engage in a continual back and forth. Experimentalists come up with increasingly intricate experimental goals, such as measuring the precise properties of the Higgs boson. Ambitious goals tend to require elaborate theoretical calculations, which the theorists are responsible for. The experimental physicists’ “wish list is always too full of many complicated processes,” said Pierpaolo Mastrolia, a theoretical physicist at the University of Padua in Italy. “Therefore we identify some processes that can be computed in a reasonable amount of time.”
By “processes,” Mastrolia is referring to the chain of events that unfolds after particles collide. For example, a pair of gluons might combine through a series of intermediate steps — particles morphing into other particles — to form a Higgs boson, which then decays into still more particles. In general, physicists prefer to study processes involving larger numbers of particles, since the added complexity assists in searches for physical effects that aren’t described by today’s best theories. But each additional particle requires more math.
To read more, click here.