Researchers have discovered how to control molecules attached to graphene, paving the way for tiny biological sensors and devices to hold information.

Graphene is a material made of a single sheet of carbon atoms in a honeycomb arrangement. Because of its unique electrical conductivity, graphene has the potential to be a base for electronic devices that are only nanometres (billionths of a metre) in size.

In order to tune sheets of graphene to be useful in different situations, other organic molecules are attached to the sheet, and these molecules must interact with the graphene sheet in predictable ways.

For example, if the electric charge of molecules could be controlled, then they could be used as molecular 'switches'. Switches are important in electronic devices that store information, such as hard drives, where the sequence of 'on' or 'off' positions of the switch encodes information, in a similar way to the 1s and 0s of digital information.

Researchers have experimented with on graphene sheets, but it has been difficult to interpret the results and therefore to design devices that take advantage of the interactions between the sheets and molecules.

Now, a team led by Prof Mike Crommie from the University of California, Berkeley and including researchers from Imperial College London have discovered how to control one property – the – of single attached to graphene sheets.

Their results are published today in the journal Nature Communications.

To read more, click here.