A University of California, Riverside assistant professor has combined photosynthesis and physics to make a key discovery that could help make solar cells more efficient. The findings were recently published in the journal Nano Letters.

Nathan Gabor is focused on experimental condensed matter physics, and uses light to probe the fundamental laws of quantum mechanics. But, he got interested in photosynthesis when a question popped into his head in 2010: Why are plants green? He soon discovered that no one really knows.

During the past six years, he sought to help change that by combining his background in physics with a deep dive into biology.

He set out to re-think by asking the question: can we make materials for solar cells that more efficiently absorb the fluctuating amount of energy from the sun. Plants have evolved to do this, but current affordable solar cells - which are at best 20 percent efficient - do not control these sudden changes in solar power, Gabor said. That results in a lot of wasted energy and helps prevent wide-scale adoption of solar cells as an energy source.

Gabor, and several other UC Riverside physicists, addressed the problem by designing a new type of quantum photocell, which helps manipulate the flow of energy in . The design incorporates a heat engine photocell that absorbs photons from the sun and converts the photon energy into electricity.

To read more, click here.