Microsoft has been putting money into the science of quantum computing for quite a few years now, funding some of the basic research that could let us produce computers based on the fact that electrons can be in many states at once (which is called ‘superposition’).
In the computers we use today, electrons flow through transistor ‘gates’ inside a processor that are either open or closed – one or zero in binary – but what we care about is the gate, not the electron. With a qubit (short for quantum bit), it’s the electrons themselves that store the information, and that’s one and zero at once, and everything in between.
Wire together 300 qubits in a quantum computer and they could store more information than there are atoms in the universe. Plus ‘entanglement’ between the qubits means one operation in a quantum computer does the same amount of actual computing as many normal operations, so programs run far more quickly.
But there are some big problems in the way of progress when it comes to making these tiny computing devices. Namely how to keep control of the physics of exotic matter well enough to make a reliable qubit that doesn’t lose the result of its computation before you can retrieve it, not to mention wiring more than a few of them together into a full system, and keeping it very cold while you run it.
Most people tackling quantum computing are looking at superconducting qubits, but Microsoft is taking a completely different approach.
“Imagine laying out thousands of tops in a gym and getting them all spinning at once, in a complicated configuration – with some of them going clockwise and some going counter-clockwise,” Microsoft research chief Peter Lee told TechRadar. “For superconducting qubits, we have the engineering knowledge to do that, over time. It’s a remarkable engineering achievement that the world knows how to do that. But it’s not stable; within tens of microseconds it falls apart.” And the more qubits you add, the worse the problem gets.
Instead, Microsoft is betting on topological qubits, which don’t use the properties of the electron – which can be changed by the slightest interaction with what’s around it, like the electrical field of any nearby electronics – but rather, the order in which some very exotic particles called Majorana fermions or anyons, change position.
To read more, click here.