Stretching time scales to explore extreme events in nature seemed impossible, yet this feat is now conceivable thanks to a team from the Institut FEMTO-ST (CNRS/UFC/UTBM/ENSMM), which used an innovative measurement technique enabling the capture of such events in real time. This technique, which is currently applied in the field of photonics, could help predict rogue wave events1 on the ocean surface, along with other extreme natural phenomena. This research, which was conducted in collaboration with teams from Finland, Ireland, and Canada, will be published in the journal Nature Communications on December 19, 2016.
Instability and chaos in physical systems are random natural phenomena that are generally highly sensitive to fluctuations in initial conditions, however small they may be. To understand these complex and omnipresent phenomena in nature, researchers recently conducted experiments involving the propagation of light waves, and leading to the formation of ultrafast pulses on a picosecond timescale (a millionth of a millionth of a second). The study of such phenomena in optics offers the advantage of taking place on very short timescales, thus making it possible to measure a representative sample of events and to reliably characterize its statistical properties. Although they have helped improve the understanding of the dynamics connected to extreme events, until now these studies have nevertheless been conducted indirectly, due to the response time of current detectors, which are too slow to capture these rare events.
To read more, click here.