Researchers demonstrate that superconductor critical temperature can be raised above room-temperature to ≈ 400K in cuprates by precise control of the spatial separation of dopants. Hence, there still remains substantial “latent” Tc in cuprates. Their proposed doping strategy and superconducting mechanism is not restricted to cuprates and may be exploited in other materials.
Their room-temperature Tc result is based upon four observations:
• Cuprates are intrinsically inhomogeneous on the atomic-scale and are comprised of insulating and metallic regions. The metallic region is formed by doping the material.
• A diverse set of normal state properties are explained solely from the topological properties of these two regions and their doping evolution.
• Superconductivity results fromphonons at or adjacent to the interface between the metallic and insulating regions. Transition temperatures Tc ∼ 100 K are possible because the electron-phonon coupling is of longer-range than metals (nearest neighbor).
• These interface phonons explain the observed superconducting properties and lead to their prediction of room-temperature superconductivity.