Physicists have developed a quantum machine learning algorithm that can handle infinite dimensions—that is, it works with continuous variables (which have an infinite number of possible values on a closed interval) instead of the typically used discrete variables (which have only a finite number of values).
The researchers, Hoi-Kwan Lau et al., have published a paper on generalizing quantum machine learning to infinite dimensions in a recent issue of Physical Review Letters.
As the physicists explain, quantum machine learning is a new subfield within the field of quantum information that combines the speed of quantum computing with the ability to learn and adapt, as offered by machine learning.
One of the biggest advantages of having a quantum machine learning algorithm for continuous variables is that it can theoretically operate much faster than classical algorithms. Since many science and engineering models involve continuous variables, applying quantum machine learning to these problems could potentially have far-reaching applications.
"Our work demonstrates the ability to take advantage of photonics to perform machine learning tasks on a quantum computer that could far exceed the speed of any conventional computer," coauthor George Siopsis at the University of Tennessee told Phys.org. "Quantum machine learning also offers potential advantages such as lower energy requirements owing to the ability to store more information per qubit, and a very low cost per qubit compared to other technologies."
To read more, click here.