Quantum computers finally seem to be coming of age with promises of “quantum supremacy” by the end of the year. But there’s a problem—very few people know how to work them.

The bold claim of achieving "quantum supremacy" came on the back of Google unveiling a new quantum chip design. The hyperbolic phrase essentially means building a quantum device that can perform a calculation impossible for any conventional computer.

In theory, quantum computers can crush conventional ones at important tasks like factoring large numbers. That’s because unlike normal computers, whose bits can either be represented as 0 or 1, a quantum bit—or “qubit”—can be simultaneously 0 and 1 thanks to a phenomenon known as superposition.

Demonstrating this would require thousands of qubits, though, which is well beyond current capabilities. So instead Google plans to compare the computers’ ability to simulate the behavior of a random arrangement of quantum circuits. They predict it should take 50 qubits to outdo the most powerful supercomputers, a goal they feel they can reach this year.

Clearly the nature of the experiment tips the balance in favor of their chip, but the result would be impressive nonetheless, and could act as a catalyst to spur commercialization of the technology.

This year should also see the first commercial ‘universal’ quantum computing service go live, with IBM giving customers access to one of its quantum computers over the cloud for a fee. Canadian company D-Wave already provides cloud access to one of its machines, but its quantum computers are not universal, as they can only solve certain optimization problems.

But despite this apparent impetus, the technology has a major challenge to overcome. Programming these devices is much harder than programming conventional computers.

To read more, click here.