The best way to study the atmospheres of distant worlds with the James Webb Space Telescope, scheduled to launch in late 2018, will combine two of its infrared instruments, according to a team of astronomers.
"We wanted to know which combination of observing modes (of Webb) gets you the maximum information content for the minimum cost," says Natasha Batalha, graduate student in astronomy and astrophysics and astrobiology, Penn State, and lead scientist on this project.
"Information content is the total amount of information we can get from a planet's atmospheric spectrum, from temperature and composition of the gas—like water and carbon dioxide—to atmospheric pressures."
Batalha and Michael Line, assistant professor, School of Earth and Space Science, Arizona State University, developed a mathematical model to predict the quantity of information that different Webb instruments could extract about an exoplanet's atmosphere.
Their model predicts that using a combination of two infrared instruments—the Near Infrared Imager and Slitless Spectrograph (NIRISS) and the G395 mode on the Near Infrared Spectrograph (NIRSpec)—will provide the highest information content about an exoplanet's atmosphere.
To read more, click here.