Prime numbers, the indivisible atoms of arithmetic, seem to be strewn haphazardly along the number line, starting with 2, 3, 5, 7, 11, 13, 17 and continuing without pattern ad infinitum. But in 1859, the great German mathematician Bernhard Riemann hypothesized that the spacing of the primes logically follows from other numbers, now known as the “nontrivial zeros” of the Riemann zeta function.

The Riemann zeta function takes inputs that can be complex numbers — meaning they have both “real” and “imaginary” components — and yields other numbers as outputs. For certain complex-valued inputs, the function returns an output of zero; these inputs are the “nontrivial zeros” of the zeta function. Riemann discovered a formula for calculating the number of primes up to any given cutoff by summing over a sequence of these zeros. The formula also gave a way of measuring the fluctuations of the primes around their typical spacing — how much larger or smaller a given prime was when compared with what might be expected.

To read more, click here.