Northwestern University scientists have built a structurally complex material from two simple building blocks that is the lowest-density metal-organic framework ever made.

Directed by design rules developed by the scientists, uranium atoms and organic linkers self-assemble into a beautiful crystal—a large, airy 3-D net of very roomy and useful pores. The pores are so roomy, in fact, that the scientists have nestled a large enzyme inside a pore—no small feat. The material can act as a protective scaffold for enzymes.

"We are building with one-atom precision," said Omar K. Farha, a research professor of chemistry in the Weinberg College of Arts and Sciences who led the research. "Our material begins at the level of individual atoms, measured by angstroms, and ends on the hundreds of microns level, where we can hold the small crystal with a tweezers and see it with the naked eye."

The study was published in the May 12 issue of the journal Science.



Read more at: https://phys.org/news/2017-05-simple-blocks-complex-d-material.html#jCp

Northwestern University scientists have built a structurally complex material from two simple building blocks that is the lowest-density metal-organic framework ever made.

Directed by design rules developed by the scientists, uranium atoms and organic linkers self-assemble into a beautiful crystal—a large, airy 3-D net of very roomy and useful pores. The pores are so roomy, in fact, that the scientists have nestled a large enzyme inside a pore—no small feat. The material can act as a protective scaffold for enzymes.
"We are building with one-atom precision," said Omar K. Farha, a research professor of chemistry in the Weinberg College of Arts and Sciences who led the research. "Our material begins at the level of individual atoms, measured by angstroms, and ends on the hundreds of microns level, where we can hold the small crystal
witha tweezers and see it with the naked eye."

The study was published in the May 12 issue of the journal Science.

To read more, click here.